Lecture # 6

Engineering Geology and Seismology

Geological Identification of Rocks

Instructor:

Prof. Dr. Attaullah Shah

Department of Civil Engineering City University of Science and IT Peshawar

Characterizing Rocks

As already discussed, there are 3 major types of rocks

IGNEOUS – formed from molten magma

SEDIMENTARY – formed from sediment (soil, sand, etc.)

METAMORPHIC – formed by applying heat and pressure to other existing rocks

The Rock Cycle – a representation of the interrelationship between different types of rocks.

Characterizing Rocks

The three major characterizing features of rocks are:

- Color
- Composition (Mineralogy/Chemistry)
- Texture

Note: Even the most sophisticated geological classification schemes are based on these features

Characterizing Rocks

Classification by Color

Color Index (used mainly for igneous rocks)

- Leucocratic light color
- Mesocratic intermediate color
- Melanocratic dark color and/or
- Felsic rich in light colored minerals
- Mafic rich in dark colored minerals

Igneous Rocks

Textures of Igneous Rocks

- Aphanitic fine-grained. Individual grains can't be seen with naked eye
- Phaneritic grains easily seen with the naked eye
- Porphyritic larger grains in finer grains
 Inclusions
 - > Xenoliths
 - >Xenocrysts

Aphanitic Texture

porphyritic andesite

Vesicular & Glassy Textures vesicular basalt

vesicle *

Xenoliths

and a second

Xenocryst

		Felsic (light color)	Intermediate		Mafic (dark color)	Ultramafic		
exture	Coarse	Granite	Diorite		Diorite		Gabbro	Peridotite
	Fine	Rhyolite	Andesite		Basalt			
	Vesi- cular	Pumic	e	s	coria			
L	Glassy							
		QUARTZ K-FELDSPAR NA-PLAG	NA-CA PLAG AMPHIBOLE		CA PLAG PYROXENE	PYROXENE OLIVINE		

Table 2.1 Igneous rock identification key. Color, with associated mineral composition, is shown along the top axis. Each rock in a column has the color and composition indicated at the top of the column. Texture is shown along the left side of the key. Each rock in a row has the texture indicated for that row.

To determine the name of a rock, intersect the appropriate column (color & mineral composition) with the appropriate row (texture) and read the name at the place of intersection.

Also called phanentia. Crystals generally 1-10 mm (1 cm). The term pegmatite is added to the rock name when crystals are greater than 1 cm; e.g. granite-pegmatite.

Also called aphanitic. Crystals generally less than 1 mm.

¹ For example, a granite with phenocrysts is called porphyritic granite.

⁴ Basalt with a cinder-like appearance that develops from gas bubbles trapped in cooling lave (a texture referred to as vesicular) is called scoria.

Sedimentary Rocks Detrital & Chemical Rock Classification Chemical Rocks Detrital Rocks Limestone Conglomerate **Chert** (Flint) Sandstones Salt (Evaporite) Siltstone Shale

Detrital Sedimentary Rocks

Detrital rocks are classified based on particle size and grain shape

TABLE 7.1 Particle Size Classification for Detrital Rocks										
Size Range (mi	Particle N	Co	ommor	n Sedime	Detrital Rock					
>256 64–256 4–64 2–4	Bould Cobbl Pebbl Granu			Gravel		Conglomerate or breccia				
1/16–2		Sand		Sand				Sandstone		
1/256–1/ <1/256	16 L	Silt Clay 10	20	30	40	Mud 50	60 		Shale, mudstone, or siltstone	

Detrital Sedimentary Rocks

• Conglomerates

– Poorly Sorted particle sizes

- Well-rounded particles

– Usually particles are gravel sized

Close up

Detrital Sedimentary Rocks

• Breccia

– Poorly sorted grains

– Angular grains

- Gravel sized grains

Close up

Detrital Sedimentary Rocks

• Sandstone

– Well sorted particles

– Particles can be angular to rounded

– Sand-sized Particles

Close up

Detrital Sedimentary Rocks

• Shale

- Microscopic grain size
- Consist of silt and clay size grains
- Cannot see grains with naked eye
- Occur in "quiet" depositional environments

Chemical Sedimentary Rocks

- Classification
 - Inorganic Not produced by living things.
 - Biochemical Are produced by or are
 - remnants of living things (e.g. shell
 - fragments, coral reefs, etc)

Chemical Sedimentary Rocks

• Limestone

– Most abundant chemical rock

Inorganic (oolitic limestone,
Travertine) or Biochemical (Chalk,
Coquina)

Limestone (Chemical Rocks)

• Travertine

– Common in caves

Happen when
calcium carbonate
is precipitated out
of groundwater

Limestone (Chemical Rocks)

 Coquina

 Consists of loosely cemented shell fragments

Close up

Fine-grained limestone

Chemical Sedimentary Rocks

- Chert (Flint)
 - Consists of Microcrystalline Silica
 - Two major occurrences of chert
 - Irregular shaped nodules in limestone
 - layers of rock
 - Most likely Biochemical

A. Cross-section through a geoid showing silica layering Copyright © 2005 Pearson Prentice Hall, Inc.

B. Flint

Table 2.3 Sedimentary rock identification key. Sedimentary rocks are divided into two groups, detrital and chemical, depending upon the type of material that composes them. Detrital rocks are further subdivided by the size of their grains, while the subdivision of the chemical rocks is determined by composition.

	DET	RITAL ROCKS			CHEMICAL ROCK	8	
Texture (grain size)	Texture (grain size)		Rock Name	Composition	Texture (grain size)	Rock Name	
Coarse (over 2 mm)	37	Rounded fragments of quartz and/or chert	Conglomerate		Fine to coarse crystalline	Crystalline Limestone	
with large grains	Angular fragments of quartz and/or chert Breccia		Visible shells and shell	B	В		
Medium		Quartz usually dominates	Sandstone	Calcite, CaCO,	fragments loosely cemented	o coquina o c	o L c I
(1/16 to 2 mm) feels "sandy"		(If abundant feldspar is present the rock is called Arkose)		(will effervesce)	Various size shells and shell fragments cemented with csicite cement	Fossiliferous m Limestone i Chalk I	h m e e m s i t
Fine (1/16 to 1/256 mm)		Quartz and clay	Siltstone		Microscopic shells		anle
Very fine (less than 1/256 mm)		Quartz and clay	Shale		and clay	Chaik	
				Dolomite CaMg(CO ₃) ₂ (will effervesce if powdered)	Fine to coarse crystalline	Dolostone Chert (light colored) Flint (dark colored) Rock Gypsum	
				Quartz, SIO ₂	Very fine crystalline		
				Gypsum CaSO ₄ •2H ₂ O	Fine to coarse crystalline		
				Halite, NaCl Fine to coarse		Rock Sal	t

crystalline Various size

fragments

Bituminous Coal

Altered plant

fragments

Metamorphic Rocks

Classified into two main groups

– Foliated Rocks

-Non-foliated Rocks

B. Nonfoliated texture

Metamorphic Rocks

Foliated Rocks

• Progression of Shale to Gneiss

- Slate Low Metamorphic Grade
- Phyllite
- Schist
- Gneiss High Metamorphic Grade

Metamorphic Rocks

Foliated Textures

- Slaty very fine-grained, fissile
- Phyllitic fine-grained, foliated, shinny
- Schistose foliated, large grains visible
- Gneissic light and dark bands

Parent Rock

Shale

Slaty Cleavage

Phyllite

- Parent Rock
 Slate
- Characteristic sheen/shine
- Phyllitic Texture

Schist

Parent Rock

Phyllite

Characteristic scaly appearance
Schistosity

Gneiss

• Parent Rock - Schist • Characteristic of light and dark banding • Gneissic **Texture**

Metamorphic Rocks

Non-foliated Rocks

Rocks that show no Foliation

- Crystalline Rocks
- Marble
- Quartzite
- Anthracite (coal)

 Parent Rock

 Limestone or Dolostone

 Reacts to Acid

(b) Marble

Parent Rock

Sandstone

Moderate to

high
metamorphism

Very Hard

Anthracite (coal)

Parent material

Plant matter

High

metamorphism

Shinny and hard

Table 2.5 Metamorphic rock identification key. Metamorphic rocks are divided into the two textual groups, foliated and nonfoliated. Foliated rocks are further subdivided based upon the size of the mineral grains.

Foliated	Orietated		Very fine	Slate	l n	Me	Excellent rock cleavage, smooth dull surfaces	Shale, mudstone, or siltstone
			Fine	Phyllite	c r e	t a m	Breaks along wavey surfaces, glossy sheen	Slate
			Medium to Coarse	Schist	a s i	o r p	Micaceous minerals dominate, scaly foliation	Phyllite
	pep		Medium to Coarse	Gneiss	g	h i s	Compositional banding due to segregation of minerals	Schist, granite, or volcanic rocks
	Ban	120	Medium to Coarse	Migmatite		m	Banded rock with zones of light- colored crystalline minerals	Gneiss
N o n f o l i		22676	Medium to Coarse	Marble			Interlocking calcite or dolomite grains	Limestone, dolostone
		KX3R	Medium to Coarse	Quartzite Hornfels			Fused quartz grains, massive, very hard	Quartz sandstone
			Fine				Usually, dark massive rock with dull luster	Any rock type
a t			Fine	Anthracite n to arse Fault breccia			Shiny black rock that may exhibit conchoidal fracture	Bituminous coal
d		KANG AN	Medium to very coarse				Broken fragments in a haphazard arrangement	Any rock type